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J. Phys. A: Math. Gen. 20 (1987) 1485-1494. Printed in the U K  

Inclusion+!xclusion relations on the triangular lattice 

I G Enting 
CSIRO, Division of Atmospheric Research, Private Bag 1, Mordialloc, Victoria 3195, 
Australia 

Received 17 March 1986 

Abstract. The combinatorial factors required for performing finite lattice series expansions 
on the triangular lattice are discussed. Series expansions can be obtained from a linear 
combination of free energies for finite convex hexagonal regions. An algorithm for calculat- 
ing the combinatorial weights is given. A number of results are presented, showing that 
many cancellations occur and that not all convex hexagons of less than a given size are 
required. For a given degree of computational complexity (as given by the size of the 
largest transfer matrix) the expansion using hexagons of less than a certain perimeter and 
exploiting the full triangular symmetry gives 50% more series terms than the earlier 
approach which adds second-neighbour bonds to the square lattice and only exploits square 
lattice symmetries. 

1. Introduction 

The finite lattice method of series expansion has recently proved to be a very powerful 
technique for deriving series expansions for lattice statistics problems on the square 
lattice. The basic principle is that FN/N, the free energy per site in the limit N + a ,  
can be expressed as a linear combination of f m n ,  free energies for m x n rectangles: 

FN/N = a ( m ,  n ) f m n ( ~ ) + O ( ~ c ( m + n ) )  
mn 

where x is some appropriate expansion variable. The principle has long been known 
by many workers in the field of series expansions but it was apparently de Neef (1975) 
who first exploited the great efficiency of the technique which comes from the fact that 
the f m n  can be easily evaluated using transfer matrix techniques. The combinatorial 
basis for (1.1) was described by Hijmans and de Boer (1955) in the context of closed 
form approximations. If a finite maximal connected graph a. is taken then the set of 
graphs required to give optimal corrections for finite-size effects will be A =  
{ai : i = 0 . . . m }  where the set A contains a. and all connected graphs that are intersec- 
tions of other pairs ai, aj with all possible relative displacements of the graphs. The 
set of all rectangles less than a certain size forms a set A with such a closure property 
under intersections. 

The weights assigned to the graphs ai are obtained by inverting the matrix of 
incidence counts as described in 0 3 and as pointed out by de Neef and Enting (1977). 
The overall approach of the finite lattice method is, as described by Wortis (1974) in 
the context of renormalised expansions, to substitute algebraic complexity for com- 
binatorial complexity. 
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1486 Z G Enting 

Since Hijmans and de Boer (1955) only considered low-order examples they failed 
to note that many cancellations occur in that many of the graphs ai in set A have zero 
weights and so need not be evaluated. 

The earliest square lattice calculations were for the three-site Potts model (de Neef 
and Enting 1977) and the limit of chromatic polynomials (Kim and Enting 1979). 
These cases replaced a,, by a maximal set of graphs: those rectangles with perimeter 
k. The other graphs in set A were smaller rectangles since the intersection of two 
rectangles always gives a rectangle. Subsequently Enting (1978a) was able to produce 
an explicit expression for the a(m, n): 

a ( m, k - m ) = 1 (1.2a) 

a(  m, k - m - 1) = -3 (1.26) 

a(  m, k - m - 2) = 3 (1.2c) 

a(  m, k - m - 3) = -1 (1.2d) 

a (m,n)=O otherwise. (1.2e) 

If m and n are taken as giving the dimensions of the rectangles in numbers of bonds 
then the high-temperature expansions of the Ising and Potts model zero-field free 
energies will be correct to order 2k and 2k+ 1, respectively. Equations (1.2a)-(1.2d) 
show that only the four largest sizes of rectangles are needed. 

An even more extreme example of such cancellations was the case considered by 
Enting and Baxter (1977) which was suggested by analogy with the variational method 
of Baxter (1968,1978). It has 

a( m, m) = 1 m fixed ( 1 . 3 ~ )  

a(  m - 1, m) = a(  m, m - 1) = -1 (1.3b) 

a(m-1,  m -1) = 1 m fixed ( 1 . 3 ~ )  

a ( j ,  k)=O otherwise. (1.3d) 
This will give the Ising and Potts high-temperature zero-field free energies correct to 
order 2m + 2 and 2m + 3, respectively. 

For the triangular lattice, the variational method suggests an expansion based on 
six hexagons (or three distinct hexagons in the case of full triangular symmetry). The 
proof of the combinatorial expression (equation (4.1) below) is given by Enting (1980a). 
However, actual calculations on the triangular lattice have usually been carried out 
by representing the lattice as a square lattice with half the second-neighbour bonds 

m = l  to k-1  

m = 1  to k-2  

m = l t o k - 3  

m = l t o k - 4  

m fixed 

present and using the combinatorial weights (1.2a)-( 1.2e) (Enting 1980b, Enting and 
Wu 1982). 

The present paper concems generalising the approach of de Neef and Enting (1977) 
to take full advantage of the symmetry of the triangular lattice. Although it has not 
been possible to obtain a general explicit formula for the weights corresponding to 
equations (1.2n)-(1.2e) an algorithm for calculating the weights is presented. In 
addition the results are presented for two particular cases and for other cases the 
numbers of graphs required is tabulated. These results show that there are also 
considerable cancellations in this triangular case and so the calculations should prove 
manageable. The layout of the remainder of the paper is as follows. Section 2 discusses 
various lattice statistics problems on the triangular lattice, determines the number of 
series terms that can be obtained from various orders of finite hexagon expansions 
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and defines the notation used to represent the various finite hexagons. Section 3 defines 
the incidence relations and the way in which the solution gives the combinatorial 
weights required for the finite lattice expansion. It also gives the overall algorithm for 
calculating these weights. Section 4 presents the results for the numbers of hexagons 
required and the actual combinatorial weights for two particular cases. The possible 
applications are summarised in 8 5 .  

2. Series groupings 

The set of finite lattices to be considered in this paper are convex hexagons on the 
triangular lattice. These will be described by a set of numbers [ n ,  , n,, . . . , n6] that 
give the lengths of the sides in various directions as shown in figure l ( a )  which 
corresponds to [ 2 , 2 , 2 , 3 , 1 , 3 ] .  The other examples show how various degenerate cases 
have sides of length zero. Such cases must be included as they can be generated by 
the intersection of pairs of hexagons or other graphs derived from intersecting hexagons. 
Throughout this paper the term ‘hexagons’ will be taken to include such degenerate 
cases. The graphs that are considered are classified by their perimeters and only convex 
graphs are required. The following properties are important: 

[ 0.0.0.0.0.0 1 - i c l  

[ 2.0.0.2.0.0 1 

A i d )  [ 1.3.3.0.4.2 1 

[ 1.0.1.0.1.0 1 

Figure 1. Examples of convex hexagonal graphs showing notation and including degenerate 
cases. ( a )  General notation, ( b ) - ( e )  various degeneratz cases. 

( i )  any convex graph a which is a subgraph of another convex graph p will have 
its perimeter p ,  

(ii) the intersection of two convex graphs with an arbitrary relative displacement 
is a convex graph (or the empty set); therefore 

(iii) the set of graphs of perimeter p can be used as a maximal set: all graphs 
derived from this set will have perimeters less than p ;  

(iv) any non-convex graph a of perimeter p ,  is a subgraph of a convex graph p 
of perimeter p p  6 p , .  

The expansions that we consider here are the low-temperature and high-temperature 
expansions of the q-state Potts model with the Ising model as a special case. The 
low-temperature graphs are sets of perturbed sites. In terms of the variable U = 
exp(AJ/kT), a connected set of perturbed sites a gives a contribution of order un where 

p p ,  and the equality only holds if a = p ;  

n = 6 + 2 p , + d , .  (2.1) 
The term d,  is the length of the internal boundaries between sites perturbed into 
different states. For the q = 2 case (i.e. the Ising model) d,  vanishes, n is always even 
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and so the low-temperature series can be expressed in powers of U’. Enting (1978b) 
has described the linked-cluster expansion for low-temperature series, has shown that 
the leading powers are the same as for conventional expansions and that, as described 
by de Neef and Enting (1977), the linked cluster expansion can be resummed into a 
finite lattice form. It follows that the first power given incorrectly by a finite lattice 
expansion is the lowest power associated with any of the connected graphs that do 
not fit into any of the maximal set used in the finite lattice expansions. For the Potts 
model the lowest powers are associated with Ising-like graphs, i.e. d, =0,  and so if 
the maximal set is the graphs with perimeter p then the first incorrect power is 2p + 8. 
Thus Potts model series are correct to order u~~~~ and king series correct to ( u ’ ) ~ + ~ .  

Similarly, for high-temperature expansions, the lowest graphs in the expansion of 
the free-energy are Ising-like with a loop of length p giving a power w p  with 

w = (1 - u ) / ( l  + ( q  - 1)u) (2.2a) 

w = tanh(iAJ/kT) for q = 2. (2.2b) 

Thus a finite lattice expansion with maximal perimeter p will, by virtue of property 
(iv) above, be correct to order wp. (For expansions in powers of w, degenerate 
‘straight-line’ graphs such as in figure l (c )  make no contribution.) 

A useful property to describe the various hexagons is the breadth perpendicular 
to each of the three bond directions. Thus we define 

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

As well as defining the bi, equations (2.4a)-(2.4c) represent constraints on the set of 
n i .  However only two of the constraints are independent. The importance of the bi 
is that the partition function for a q-state model on a graph of breadth b can be 
generated by a transfer matrix of size qb+’ for the low-temperature representation and 
size qb  for the high-temperature form. (Each of these factors can be reduced by 
utilising any equivalences between states as in the standard Potts model for example.) 
From (2.la)-(2.lc) it follows that 

or 

b, = n ,  + n2 = n,+ n ,  

b2 = n 2 +  n3 = n,+  n6 

b3= n ,+  n4= n,+ n,. 

6 3 

i = l  j = ,  
p =  c ni = c b,. (2.4) 

Thus a transfer matrix calculation for graphs of maximum width b can calculate the 
partition functions for all graphs of p d 3 b + 2. The general hexagonal graph has 11 
other equivalent graphs that can be derived from it by combinations of rotations and 
reflection. In order to make maximum use of the symmetry it is desirable to pick a 
canonical representative from each equivalence class and calculate its partition func- 
tion. We do this by defining an index ( b l ,  n 2 ,  n , ,  n6) and selecting the smallest values 
of b,, and in cases of equality the smallest n2 and so on. The reasons for this choice 
are 

(i) smallest breadth so as to give the most efficient transfer matrix; 
(ii) smallest n 2 ,  n ,  so that, as shown in figure 2(a) ,  the graph is as near as possible 

to rectangular, thus reducing the number of ‘comer-truncation’ modifications to the 
transfer matrix formalism; 
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b Y 4  nl 

- 4 4  
( a  1 l b l  

Figure 2. ( a )  Square lattice orientation and definition of breadths b,. (b)  Incidence relations 
between graphs n and m. The incidence number W(m, n )  is the number of integer x, y 
displacements for which m lies within n. 

(iii) n6 is chosen because it is independent of b, ,  n, and n5 (as is n3)  while 

The numbers b, ,  n 2 ,  n5 and n6 uniquely characterise a hexagon since the other ni 
n 4 =  b , - n , .  

can be derived from equations (2.3a)-(2.3~). 

3. Incidence relations and computational techniques 

In this section the various hexagons are denoted by vectors n, m, etc, representing 
[ n ,  , n 2 ,  . . . , n6] .  The finite lattice expansions have an irreducible contribution to g (  n) 
for each finite lattice n. These g ( n )  are summations of conventional connected graph 
expansions using graphs a with irreducible weights c( a) 

where h ( a )  is the convex hull of graph a, i.e. the smallest hexagon that can bound 
graph a. Formally the free energy per site is 

F /  N = C( a )  (3.2a) 

=C g ( n )  (3 .2b )  

U 

n 

since each a contributes to one and only one g ( n ) .  When deriving series expansions 
the summations are truncated; the effect of this truncation is described in the previous 
section. The finite lattice method calculates the free energies f(n) where 

(3.3) 

where W(m,  n) is the number of ways m occurs as a subgraph of n. The g ( m )  are 
not required explicitly. What is required is a set of weighting factors a ( n )  such that 

(3.4b) 

= F/ N. (3.4c) 
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Thus it is necessary to solve 

where s refers to an ordering of the graphs in which each graph succeeds all its 
subgraphs. With such an ordering W(m, n) is an upper triangular matrix with 1 on 
each diagonal element and so equations ( 3 . 5 )  can be solved by direct elimination and 
all the u(n) will be integers. Furthermore, the elimination can be performed one 
column at a time and so it is not necessary to have the whole matrix W accessible at 
any one time. The equations can be solved by generating each column and completing 
the reductions before generating the next column. 

The procedure for generating the weights u(n) is thus 
(i)  generate a list of all possible n ordered by perimeter up to some maximum p m a x ;  
(ii) set up a vector e ( m )  = 1 for all m corresponding to the right-hand side of 

(iii) for each column n, generate W ( m ,  n) and then perform the eliminations 
equation; 

e (m ) + e( m ) - e ( n ) W (  m, n ) Vm < n 
(when complete e(m) will have been set to u ( m ) ) ;  

(iv) for symmetric cases, combine the u(n) for the graphs in each equivalence 
class, associating the sum with the canonical representative defined in the previous 
section. 

The list of vectors described in (i) above can be generated by letting p run over 
the ranges 

O C P s P m a x  ( 3 . 6 ~ )  
O s n , s i p  ( 3 . 6 b )  
0 s n, s i p  - n,  ( 3 . 6 ~ )  
0 s n3 s i p  - n2 ( 3 . 6 d )  

( 3 . 7 u )  
( 3 . 7 6 )  
(3 .7c)  

subject to the constraints 
n4 = p  - n,  - 2 (  n,+ n 3 )  2 0 
n5 = n,  + n, - n 4 3  0 

n6 = n,+ n4- n ,  a0 .  

The evaluation of W ( m ,  n) is illustrated in figure 2 ( b ) .  Each possib!e incidence 
corresponds to a displacement ( x ,  y )  of the origin such that each boundary of m lies 
on the ‘inside’ of the corresponding boundary of n. 

These conditions are 

y 2 0  boundary 1 ( 3 . 8 ~ )  
m , + x - y S n ,  boundary 2 ( 3 . 8 b )  
x + m ,  + m ,  s n ,  + n, ( 3 . 8 ~ )  
y + m5 + m6 S n5 + n6 ( 3 . 8 d )  
y + m , - x s n ,  boundary 5 ( 3 . 8 e )  

W ( m ,  n) is given by the number of integer (x, y )  pairs satisfying these conditions and 
can be evaluated by using (3.8u),  ( 3 . 8 d )  and (3.8f), ( 3 . 8 ~ )  to define a pair of nested 
loops to run through x, y pairs checking constraints (3 .8b) ,  ( 3 . 8 2 ) .  

boundary 3 
boundary 4 

x s o  boundary 6 .  (3 .8-f)  
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4. Results 

The main results are presented in table 1. The column under ‘all hexagons’ gives the 
number of hexagons of each perimeter. The cumulation of these values in the following 
column gives the size of the matrix W required at each order and the growth in these 
numbers emphasises the importance of being able to reduce each row in isolation 
without having to store the whole matrix. The column ‘No’ under ‘distinct hexagons’ 
gives the number of distinct hexagons at each order for systems with full triangular 
symmetry. The cumulation of these numbers in the following column is the number 
of finite lattices that would need to be evaluated if all possible hexagons contributed. 
The final column gives the number of hexagons that are actually required, i.e. the 
number of non-zero a ( n )  at each order p .  

The a ( n )  are given for the cases p = 14 and p = 17 in tables 2 ( a )  and 2(b), 
respectively. These cases are of the form p = 3 b + 2  where b is the maximum width 
required and the two cases represent the highest order that can be calculated using 
strips up to four bonds and five bonds wide, respectively. 

These results should be contrasted to the expression given by Enting (1980a) which, 
for the reduced form of the fully symmetric case, is 

a ([ k, k - 1, k, k - 1 ,  k, k - 13) = 2 for one particular k (4 . la)  

a ( [  k - 1,  k - 1,  k, k - I, k - 1,  k]) = -3 (4.lb) 

a([k-1, k - 1 ,  k - 1 ,  k - I ,  k - I ,  k - I ] ) =  1 ( 4 . 1 ~ )  

a ( n )  = 0 for all other n. (4 . ld)  

Table 1. Hexagon counts for various perimeters. No denotes number with perimeter p .  
Cum is the cumulative total of the preceding column. ‘Distinct’ treats hexagons related 
by symmetry operations as equivalent. 

~ ~~~ 

All hexagons Distinct hexagons 
Non-zero 

P No Cum No Cum a ( n )  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

1 1 
0 1 
3 4 
2 6 
6 12 
6 18 

12 30 
12 42 
21 63 
22 85 
33 118 
36 154 
50 204 
54 258 
72 330 
78 408 
99 507 

108 615 

1 1 
0 1 
1 2 
1 3 
2 5 
1 6 
4 10 
2 12 
5 17 
4 21 
7 28 
5 33 

11 44 
7 51 

13 64 
11 75 
17 92 
13 105 

1 
1 
2 
3 
5 
6 
8 

10 
13 
15 
20 
24 
28 
34 
41 
47 
55 
64 
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Table 2. Weighting factors for hexagons of perimeters p s 14 ( a )  and p c 17 ( b )  expressed 
as n,, nt, n3 ,  n4, n,, n6 in canonical order, followed by wi .  

2 1 2 1 2 1  -2 0 0 6 0 0 6  -3 3 0 5 3 0 5 - 1 8  
0 0 5 0 0 5  3 1 1 4 1 1 4  -3 3 0 6 1 2 4 - 4 8  
1 1 3 1 1 3  15 2 1 3 2 1 3  -6 3 1 4 3 1 4 - 3 0  
2 1 2 2 1 2  15 2 2 2 2 2 2  - 1  3 1 5 1 3 3 - 3 0  
3 0 3 1 2 1  6 3 1 3 1 3 1  -2 3 2 3 3 2 3 - 1 5  
1 0 5 0 1 4  -6 2 0 5 1 1 4  12 4 0 4 4 0 4  -9 
2 0 4 1 1 3 - 4 8  2 1 4 1 2 3  30 4 0 5 2 2 3 - 4 8  
2 1 3 1 2 2 - 6 0  3 0 4 2 1 3  12 4 0 6 0 4 2 - 1 8  
3 0 3 2 1 2 - 2 4  3 1 3 2 2 2  30 4 1 4 2 3 2 - 3 0  
3 0 4 0 3 1  -6 4 0 4 1 3 1  6 5 0 5 1 4 1 - 2 4  
0 0 6 0 0 6  -6 0 0 7 0 0 7  6 1 0 8 0 1 7  6 
1 0 5 1 0 5  18 1 0 6 1 0 6  -6 2 0 7 1 1 6  12 
1 1 4 1 1 4  30 1 1 5 1 1 5 - 3 0  2 1 6 1 2 5  6 
2 0 4 2 0 4  18 2 0 5 2 0 5  -6 3 0 6 2 1 5  12 
2 0 5 0 2 3  18 2 0 6 0 2 4  -6 3 0 7 0 3 4  6 
2 1 3 2 1 3  60 2 1 4 2 1 4 - 6 0  3 1 5 2 2 4  12 
2 2 2 2 2 2  10 2 2 3 2 2 3 - 3 0  3 2 4 2 3 3  6 
3 0 3 3 0 3  9 3 0 4 3 0 4  -6 4 0 5 3 1 4  12 
3 0 4 1 2 2  72 3 0 5 1 2 3 - 4 8  4 0 6 1 3 3  12 
3 1 3 1 3 1  20 3 1 3 3 1 3 - 3 0  4 1 4 3 2 3  6 
4 0 4 0 4 0  2 3 1 4 1 3 2 - 6 0  4 1 5 1 4 2  6 
1 0 6 0 1 5 - 1 8  4 0 4 2 2 2 - 2 4  5 0 5 2 3 2  6 
2 0 5 1 1 4 - 4 8  4 0 5 0 4 1  -6 5 0 6 0 5 1  6 
2 1 4 1 2 3 - 3 0  1 0 7 0 1 6  18 
3 0 4 2 1 3 - 4 8  2 0 6 1 1 5  72 
3 0 5 0 3 2 - 1 8  2 1 5 1 2 4  60 
3 1 3 2 2 2 - 3 0  3 0 5 2 1 4  72 
4 0 4 1 3 1 - 2 4  3 0 6 0 3 3  18 
0 0 7 0 0 7  3 3 1 4 2 2 3 1 2 0  
1 0 6 1 0 6  6 3 2 3 2 3 2  20 
1 1 5 1 1 5  3 4 0 4 3 1 3 3 6  
2 0 5 2 0 5  6 4 0 5 1 3 2  72 
2 0 6 0 2 4  6 4 1 4 1 4 1  20 
2 1 4 2 1 4  6 5 0 5 0 5 0  2 
2 2 3 2 2 3  3 0 0 8 0 0 8  -3 
3 0 4 3 0 4  6 1 0 7 1 0 7 - 1 8  
3 0 5 1 2 3  12 1 1 6 1 1 6 - 1 5  
3 1 3 3 1 3  3 2 0 6 2 0 6 - 1 8  
3 1 4 1 3 2  6 2 0 7 0 2 5 - 1 8  
4 0 4 2 2 2  6 2 1 5 2 1 5 - 3 0  
4 0 5 0 4 1  6 2 2 4 2 2 4 - 1 5  

This choice involves graphs of breadth C b = 2k - 1 and will give low-temperature Potts 
model series correct to uSk+’ = u4b+9. The use of rectangular lattice graphs with weights 
given by (1.2a)-(1.2e) and breadth G b  will give low-temperature Potts model series 
correct to u4b+7. The more general form discussed in this paper, allowing the use of 
graphs of breadth S b and perimeters s p  = 3b + 2, gives Potts model series correct to 
u2p+7 = d b + l ’  . However, the apparent advantage of the general triangular formalism 
over the simpler form is reduced and possibly negated by the fact that the partition 
functions for the highly regular hexagons involved in (4.la)-(4.lc) can be calculated 
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by taking traces of comer-transfer matrix expressions (see Baxter 1978). This reduces 
(by a power of f) the size of the vectors that need to be stored at any one time (R J 
Baxter personal communication) although the overall complexity of the calculation 
appears to be comparable to that of conventional transfer matrix techniques. If this 
is so then the comer-transfer matrix approach is most suitable for problems where the 
computational effort is dominated by storage access times. 

5. Summary and applications 

The main results of this paper are the algorithm for calculating the weights a (n)  and 
the table of numbers of non-zero elements, indicating that the reductions due to 
combinatorial cancellations and the application of symmetry have reduced the calcula- 
tions required by more than 30%. 

The lack of an explicit expression for the a ( n )  does not provide a limitation on 
the possible calculations for regular systems since, for example, the work of de Neef 
and Enting (1977) and Kim and Enting (1979) preceded the derivation of equations 
(1.2a)-(1.2e). 

However the simple explicit expressions (1.2a)-( 1.2e) were of considerable utility 
in generalising the finite lattice formalism to calculate surface susceptibilities (Enting 
and Guttmann 1980) and to count polygons on the square lattice (Enting 1980c) and 
on directed lattices (Enting and Guttmann 1985). All of these problems will be harder 
to formulate on triangular lattices and the most practical approach may be to use the 
appropriate generalisations of equations (4.1a)-(4.1d). 

As a point of computational detail, equations (1.1) or (3.4) are usually replaced 
by their exponentials, thus expressing Z1”, the partition function per site, as a product 
of powers of finite lattice partition functions. This usually leads to expressions involving 
only integer coefficients. 

The discussion of the number of terms that can be derived has concentrated on 
the Potts/Ising models but is of greater generality because many models have their 
lowest order contributions from any given graph equivalent to an Ising model term. 
The enumeration of polygons presents a number of problems, the most serious arising 
from the requirement of connectedness. Enting (1980~) introduced an asymmetry by 
forcing the loops to span the lengths of the rectangles, thereby changing the com- 
binatorial factors. For the triangular lattice a more appropriate technique might be to 
follow the formulation of Nienhuis (1982, 1984) and label each loop with one of q 
states and take the q + 0 limit to select single loops. 

The calculations of combinatorial factors apply directly to the triangular lattice but 
the same factors can also be applied to the honeycomb lattice, i.e. the dual of the 
triangular lattice. Figure 3 shows the correspondence between the triangular lattice 
graphs and the honeycomb lattice graphs. An expansion on the honeycomb lattice 
can also be related to the triangular lattice by the star-triangle relation but except for 

Figure 3. Duality relations-the honeycomb lattice graphs corresponding to various convex 
hexagons on the triangular lattice. 
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the zero-field Ising model or the Potts model at criticality, the star-triangle transforma- 
tion breaks the triangular symmetry and so the combinatorial factors will be more 
complicated than those presented here. 
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